Community Advisory Group (CAG) Meeting Hudson River PCBs Superfund Site Saratoga Springs, NY, 04 April 2013

PCBs in Fish Tissues at the Hudson River PCBs Superfund Site:

Update on Results of Baseline and Remedial Action Monitoring (2004-2012)

Marc S. Greenberg, Ph.D.

U.S. EPA OSWER-OSRTI Environmental Response Team Edison, NJ

greenberg.marc@epa.gov

Background and Objectives

- Risk from fish consumption by humans and wildlife was the key driver for remediation
- > Fish monitoring in the river since 1970s and will continue
- Since 2003: Baseline, remedial action, and post-remedy monitoring that was designed to provide statistical power to address both short- and long-term needs
 - Allows evaluation of annual (short term) changes and establishment of long-term trends
 - Allows documentation of interim risk reduction following the remedial action
 - We need to demonstrate that the remedy is moving toward, or achieving RAOs (remedy effectiveness)

Baseline, Remedial Action & Long Term* Fish Monitoring Plans for UHR

River Area	No. Spp. Groups	No. Indiv/Spp Groups	Total Samples	189.1 189.1
Feeder Dam RS-1 RS-2 RS-3 Albany/Troy	4 4 4 4	20 30 25 30 20	80 120 100 120 80	Batten Kill 183.4 Northuberland Dam (Lock #5) Schuylerville Coveville

Four species/groups sampled ANNUALLY:

Top-level pred:	Blk Bass (LMB, SMB)	SF
-----------------------------------	---------------------	----

Water col feeder: Perch (YP) SF

Bottom-feeder: Bullhead (YB, BB) SF

Pumpkinseed • Yearling: WH

Annual composites of Forage Fish; n=10 per RS

Waterford Dam 159.4

Waterford Mohawk River

Bakers Falls Dam

(Lock #7)

Fort Edward

(194.8 - 188.5)

RS-2 (188.5 - 183.4) 5.1 mi

6.3 mi

Glens Falls

Feeder Dam

Sherman Island Dam

Spier

River Section 1 Fish Monitoring Stations and Dredging by Year

Total PCBs in Fish Tissues: Means Comparisons

		Approx. River			Yellow	Pumpkin-
SECTION	STATION	Mile	Black Bass	Bullhead	Perch	seed
1	ALL	188.5-195	-		_	+
2	ALL	183.4-188.5	(-)		-	+
3	ALL	168.2-183.2		-	-	

2009 vs. Baseline (Phase 1)

1	All	188.5-195	+		+	-
2	All	183.4-188.5	(+)		(+)	-
3	All	168.2-183.2	(+)	(-)		-

2010 vs. 2009 (No Dredging)

1	All	188.5-195		
2	All	183.4-188.5	٠	•
3	All	168.2-183.2	-	-

2010 vs. Baseline (No Dredging)

1	All	188.5-195	+	+
2	All	183.4-188.5	+	+
3	All	168.2-183.2		+

2011 vs. Baseline (*Phase 2, Yr 1*)

1	All	188.5-195		+	+	+
2	All	183.4-188.5		+	+	(+)
3	All	168.2-183.2	+			

2012 vs. Baseline (Phase 2, Yr 2)

	Neutral p>0.10	+	Increase Post Dredging; p < 0.05
-	Decrease Post Dredging; p < 0.05	()	0.05< p < 0.10

Ability to evaluate annual & spatial patterns is important

Variability:

Approx. one order of magnitude range of conc.

- ➤ Within each yr;
- ➤ Within & among stations
- ➤ Within reach or section

Perspective

- We have expected that short-term increases in fish PCB levels would occur during dredging
 - These apparent dredging impacts were observed in 2009 within or immediately below the Phase 1 dredging areas
 - Recovery of the pumpkinseed (rapid integrators) was observed in 2010 (no dredging)
 - Pattern of increases in tissues was observed again upon Phase 2 dredging

Perspective

- We anticipate that short-term, dredging related increases of PCBs in fish will rapidly return to baseline levels, and continue to decline thereafter following remediation
 - Exposures related to dredging are expected to be brief
 - Dredging only occurs in a given area for single dredging season, or a portion thereof (weeks to months)
 - Tissue concentrations of PCBs in fish have been shown to decrease rapidly following spikes related to exposure events and environmental dredging.

Spikes in tissue concentrations linked to dredging events have been observed to recover

Cumberland Bay Site, Plattsburgh, NY – Yellow Perch, Wilcox Dock

Parting Thoughts

- Dredging program is not the only factor in this system influencing PCB concentrations in fish
 - Natural variability
 - Flooding, storms, flow conditions

We have not observed changes in fish tissue concentrations that are outside of expectations

Annual monitoring will continue

