

Baseline Human Health Risk Assessment

Terrie Boguski, Skeo Solutions

- 1. Purpose
- 2. Process
- 3. Models and methods
- 4. Research needed
- 5. Final report and decision making

Disclaimer

- TASC presentations are based only on information available to TASC
- TASC does not speak for or represent EPA

Purpose

Purpose of Baseline Human Health Risk Assessment

- To understand potential risks to human health from PCBs in floodplain soils and sediments
 - Supports site-specific decision making

Process

Risk Assessment Process

Four steps:

- 1. Hazard identification
- 2. Exposure assessment
- 3. Dose-response assessment
- 4. Risk characterization

Step 1. Hazard Identification

- What chemicals have been released?
 PCBs
- Where?
 - Upper Hudson River floodplain
- What concentrations?
 - Variable
 - Exposure areas (EAs)
 - Flood frequency units (FFUs)

What Happens When PCBs Are Released into the Environment?

- PCBs tend to:
 - Stick to soil or sediment
 - Wash into bodies of water
 - Stay in the environment for a long time

Where Is the Hazard?

- Patterns detected
 - In general, PCB levels:
 - Are highest close to the river
 - Decrease further out in the floodplain
 - Decrease downstream of Fort Edward
 - Are affected by the frequency of flooding and ground surface elevation
 - Are lower at higher elevations

Step 2. Exposure Assessment

- How are people exposed?
- Who is exposed?
- Where is exposure happening?
- What concentrations are people exposed to?

How Are People Exposed?

- Ingestion
 - Touching contaminated soil or sediment and putting hands in mouth
 - Eating contaminated foods
- Inhalation
- Absorption through skin

Exposure Pathways

RI/FS Work Plan Figure 3-1

Exposure Point Concentrations

No Exposure = No Risk

Exposure Assessment

- Reasonable maximum exposure (RME) scenario – highest exposure reasonably expected to occur at a site
- Central tendency exposure (CTE) assumptions reflect more typical exposures

Exposure Assessment

Property use scenarios:

- Residential
- Agricultural
- Commercial/industrial
- Recreational

Step 3: Dose-Response Assessment

Estimates relationship between amount of exposure and health effect

Estimates based on:

- health data
- animal studies
- assumptions about long-term exposure

Dose-Response Assessment

- Noncancer health effects:
 - Measured by the hazard index (HI)
 - If HI is less than one, no adverse health effect is expected
 - Reference Dose (RfD)
 - Daily oral exposure not likely to cause adverse noncancer health effects in humans, usually including sensitive subgroups

Reference Concentration (RfC)

• Concentration in air where continuous inhalation is not likely to cause adverse noncancer health effects during a lifetime.

Dose-Response Assessment

- Cancer health effects:
 - Calculated differently than potential for noncancer health effects
 - Risk assessment assumes "no safe threshold value"
 - Risk is expressed as the potential for extra lifetime risk of cancer:
 - 1x10⁻⁴ means a risk of one in ten thousand
 - 1x10⁻⁶ means a risk of one in a million

Step 4. Risk Characterization

Extra risk associated with PCBs present in a defined exposure area

- Based on:
 - hazard identification
 - exposure assessment
 - dose-response assessment
- EPA's default screening value in residential soil
 - 0.24 milligrams per kilogram (mg/kg) of soil

Methods and Models

GE's Approach and Deliverables

- 1. Screening level assessment (SLA)
 - Is maximum concentration of PCBs in FFUs on tax parcel above or below
 0.24 mg/kg?
 - Properties are "in" or "out" for further evaluation
 - Consideration given to any circumstances that warrant further analysis

2. Data gap analysis/data collection

GE's Approach and Deliverables

- 3. Pathway analysis report (PAR)
 - Will determine for each remaining parcel and exposure area :
 - Current and reasonably anticipated future
 uses
 - Exposure scenario to be evaluated
 - Age groups to be considered
 - Specific exposure parameters and toxicity values to be used
 - Exposure point concentrations (EPCs)

Risk Assessment Refinements

- 4. Phase 1 risk assessment
 - Uses EPCs from the Pathway Analysis
 Report
- 5. Collect additional data to support Phase 2, if needed
- 6. Phase 2 risk assessment
- 7. Final report

Refinement Example

• Property A

Research Requirements

Research Needed

- For properties not excluded by screening level analysis
 - Careful exposure analysis is needed
 - Property owner and community input on:
 - Current and future uses
 - Acceptable level of exposure
 - » Reasonable maximum level
 - » Central tendency level

- Acceptable level of risk needs to be set

 Property owner and community input on risk acceptance

Final Report and Decision Making

Final Report and Decision Making

Final report to include:

- Overview and summary of entire BHHRA process
 - SLA, Phase 1 and Phase 2
 - Results of data collection after completion of Phase 1
 - Summary of all exposure areas (EAs) evaluated in Phase 2
 - Exposure scenarios and EPCs
 - Estimated risks and hazards associated with each
- A single table, including:
 - All EAs in the study area
 - Maximum concentration used for the SLA
 - General exposure scenario assigned to each EA carried beyond the SLA
 - Phase 1 EPC and risk results
 - Identification of all parcels carried forward into Phase 2
 - Refined and default exposure scenarios assigned to each parcel for Phase 2
 - Phase 2 EPC and risk results
- All information will be provided electronically to EPA, to be incorporated into GIS systems for review and future use.

- EPA will continue giving individual handouts to homeowners
 - Summarize results for all EAs owned
 - Indicate whether maximum concentration used in the SLA exceeded conservative screening level
 - Present results of each phase of risk assessment evaluated

Questions and Comments?

TASC Technical Assistance Provider

Terrie Boguski, PE

(913) 780-3328

tboguski@skeo.com