THE PHASE 1 DREDGING PROJECT: What Did We Learn and How Do We Apply The Lessons?

Presented by: John Haggard, GE Hudson Project Manager Dr. John Connolly, AnchorQEA

Hudson River Dredging Project

- EPA chose dredging as preferred remedy to address PCBs in river-bottom sediments in Upper Hudson River in 2002
- ROD envisioned dredging in two phases over sixyear period; first phase in 2009 was a full-scale test
- Project goals were to reduce PCB levels in water, in fish, in sediment and flowing downstream
- Performance standards were set to govern the project and achieve the goals

Hudson River Dredging Overview

- GE designed, coordinated, contracted and paid for the project
- EPA approved GE plans and supervised work; daily coordination meetings
- GE reimbursed EPA and New York State for past costs and oversight: \$90MM to date
- EPA, GE evaluated Phase 1; independent peer review panel now reviewing Phase 1; reports expected this summer

Phase 1: What EPA Sought to Accomplish

- Removal of 265,000 cubic yards of sediment from 18 dredge areas
- Removal of 89,000 cubic yards of sediment during one 30-day period (at pace required to ensure project is completed in six years)
- Keep PCB levels in water below the federal drinking water standard (500 parts per trillion)

Phase 1: What EPA Sought to Accomplish

- Keep PCBs released downstream during dredging no more than 117 kg (258 pounds)
- Ensure PCB levels on the surface of the river bottom post-dredging are below an average of 0.25 parts per million
- Keep PCB levels in air below 110 nanograms per cubic meter in residential areas and 260 nanograms per cubic meter in commercial/industrial areas

Phase 1: What It Required

- Dredging conducted around the clock from May through October. Operations concluded Dec. 4.
- 500 employees on job; 100 vessels in river.
- 55% of dredged areas subject to flow control/diversion during dredging
- 18,000 environmental samples collected
- Seven major contractors and 210 local companies

Phase 1: What It Required

- 110-acre processing and transportation facility on the Champlain Canal
 - 1,500 foot wharf
 - Canal widened by 65 feet
 - 12 filter presses 140,000 pounds each
 - 41,000-square-foot filter press building
 - 27,000-square-foot water treatment building
 - Seven miles of railroad track; 450 rail cars to transport dried sediment to disposal facility
 - 2.4 million square feet of geomembrane liner to protect ground beneath facility

Phase 1: Lessons Learned

- Resuspension occurred at about the rate as experienced at other sites (3-4%)
- This resulted in higher PCB levels in water, in sediments, in fish and in water downstream
- State-of-the-science technologies employed to control resuspension did not reduce it significantly
- Multiple unproductive dredging passes required to meet residual standard, impeding productivity

GE's Recommendations

- Continue dredging but with adjustments to make it more effective and to ensure EPA's goals are met
- To protect the river and fish, set standards to limit release of PCBs into the water during Phase 2
- Target high-priority deposits of PCBs to reduce PCB levels in fish while minimizing downstream impacts from resuspension
- Complete Phase 2 in five years so benefits to river begin sooner
- Conduct long-term monitoring to ensure dredging was effective and achieved EPA's goals

Dr. John Connolly AnchorQEA

Goals of the Remedy:

- Reduce PCB concentrations in fish
- Reduce PCB concentrations in river water
- Reduce the <u>bioavailable</u> inventory (mass) of PCBs in sediments
- Minimize the long-term downstream transport of PCBs in the river

Performance Standards Established to: ... ensure that the cleanup meets the human health and environmental protection objectives of the Record of Decision."

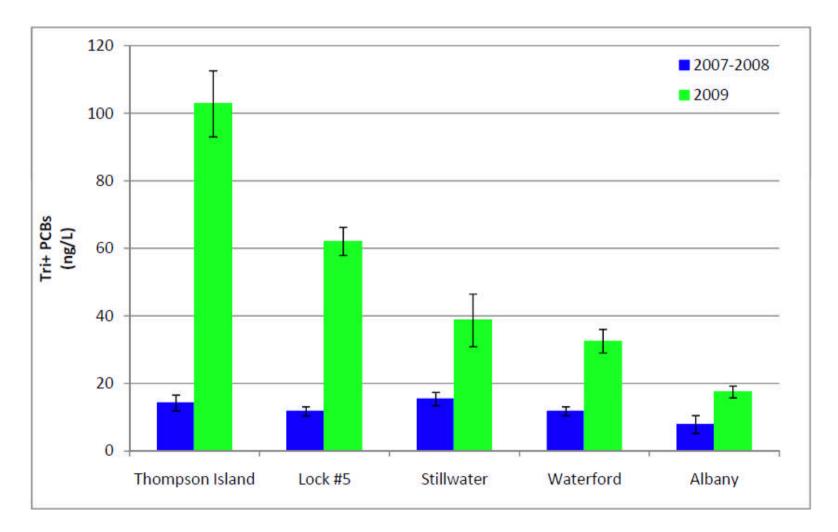
Basics of the Resuspension Standard

- Meant to ensure that resuspension does not:
 - Cause violations of the drinking water standard
 - Compromise the benefits of the remedy by releasing more PCBs than would happen without dredging
- Constitutes a set of criteria that trigger efforts to reduce resuspension

What Happened in Phase 1?

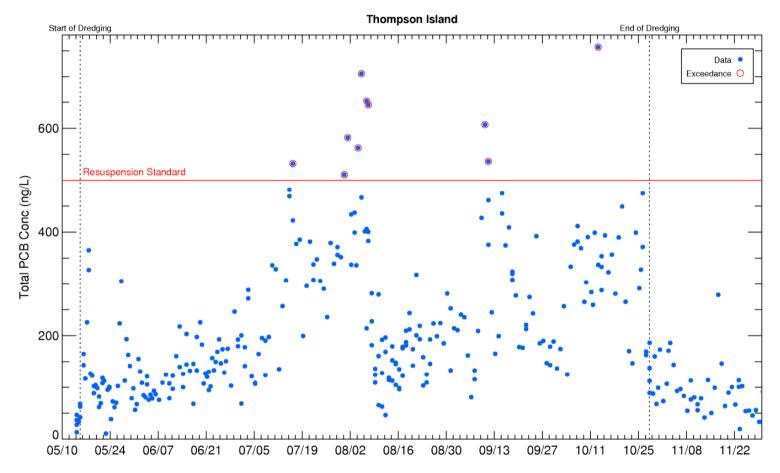
Criteria	Planned	Actual	Difference
Sediment Volume (cy)	265,000	286,000	10%
PCB Removed (kg)	20,000	16,300	-19%
Resuspension Load (kg)	117	200	71%

More resuspension than annual allotment

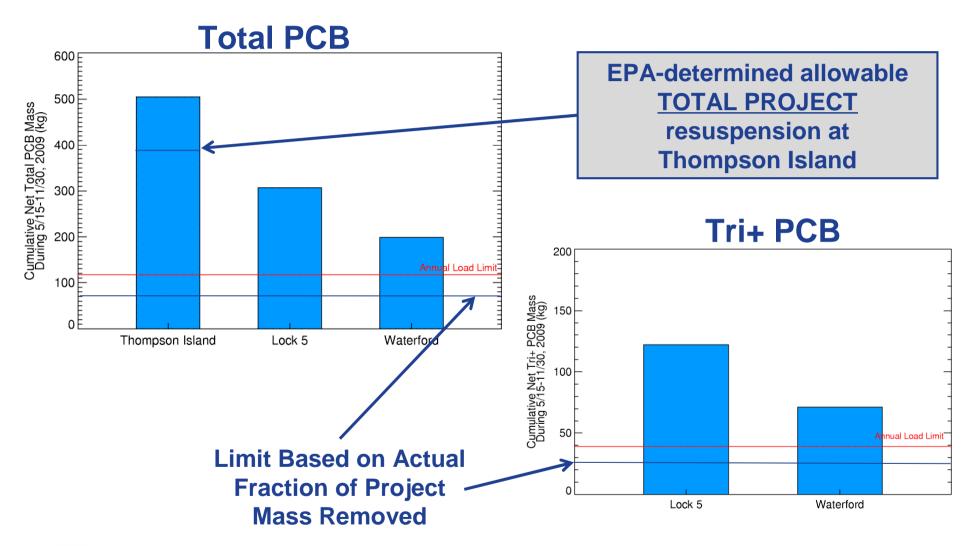

- 4% in areas without structural controls 3% overall (similar to other dredging projects)
- Triggers exceeded despite structural controls and BMPs
 - Exceeded drinking water standard 10 times
 - Above 350 ng/L control level 20% of the project
 - Above 1080 g/d load control level for almost entire project
 - Exceeded allowable annual load

Resuspension had impact unaccounted for in standard

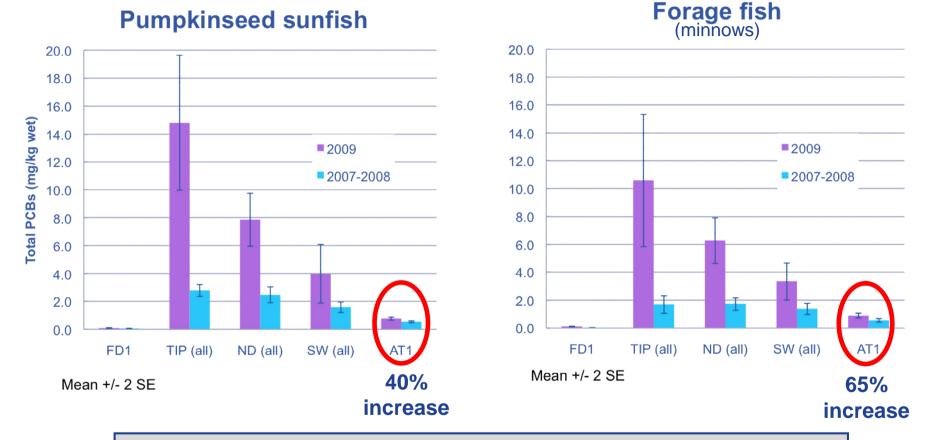
- Resuspended sediments spread to downstream areas
- Created bioavailable layer and resuspension after dredging was completed



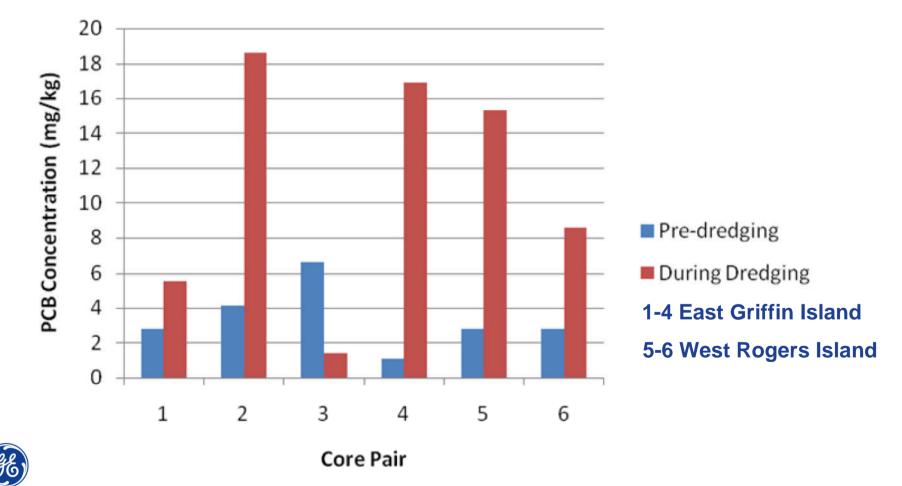
All Stations Showed Increased PCB Levels in Water

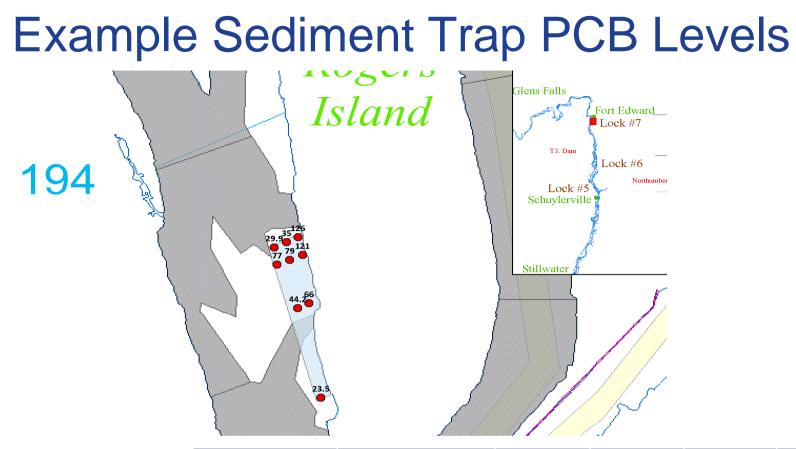

PCBs in Water at 1st Far-Field Station

500 ppt water quality standard exceeded on 10 occasions at Thompson Island Station



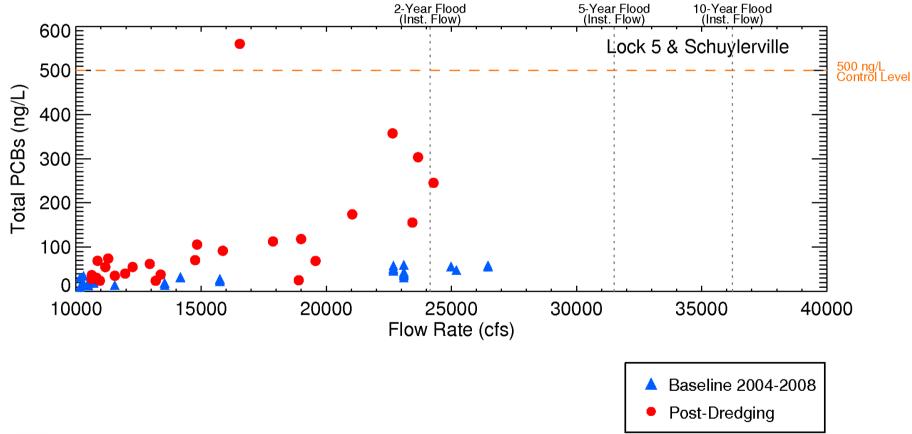
Cumulative Net PCB Load May-December


PCB levels in Fish Spiked (September data)



5-fold increase in Thompson Island Pool – decreasing impact with distance downstream, though statistically significant through Albany

Surface Sediment (0-5 cm) PCBs at Locations Downstream of Phase 1 Dredge Areas

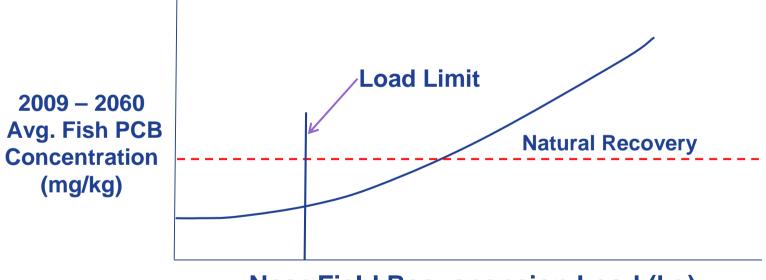


Study Area	Sediment Trap Deployment Time	Minimum PCB Conc. (mg/kg)	Maximum PCB Conc. (mg/kg)	Average PCB Conc. (mg/kg)	Pre-Dredging (0-2 in.) Average PCB Conc. (mg/kg)
EGIA	Jul. 8 - Aug. 18	30	121	72	22
Rogers Island West Channel	Aug. 20 - Sept. 16	24	126	67	5
Lock 7	Sept. 18 - Oct. 20	28	51	38	0.6
EGIA	Oct. 15 - Oct. 22	37	90	64	22

March-April High Flow Monitoring at Schuylerville

Numerous Steps to Control Resuspension

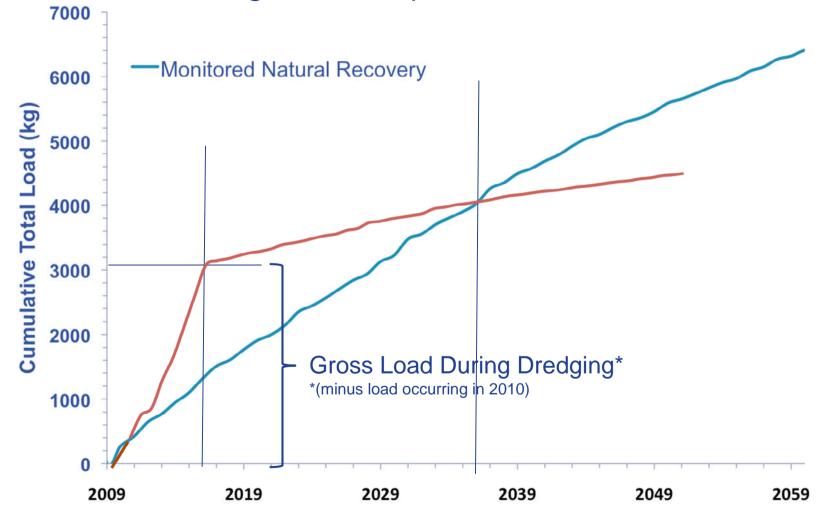
- Rock wall in East Channel
- Flow-related restrictions in West Channel
- Sheetpiling wall at Griffin Island
- Limitations on tug operation in shallow areas
- Use of smaller scows in shallow areas
- Prohibition on bucket decanting
- Alternated dredging areas
- Sheen containment around all dredges


Resuspension is Critical Determinant

- For dredging project to achieve EPA goals, resuspension must be reduced
- GE recommends using updated computer model to evaluate how much resuspension can be permitted before benefits of dredging are compromised
- Establishing limits on quantity of PCBs dredging is permitted to resuspend
- Apply limits to both Upper and Lower Hudson to protect water quality and fish

Limiting Resuspension Preserves Benefit to Upper Hudson

Use model projections of PCB levels in fish to relate resuspension and reductions in PCB levels in fish



Near-Field Resuspension Load (kg)

Dredging Project That Accrues a Benefit by 2036

Assuming No Re-deposition of PCBs

Conclusions

- Set limits on resuspension to protect Upper and Lower Hudson
- Prioritize dredge areas based on contribution to PCBs in fish and load to river; identify "high value" deposits for removal
- Remove these deposits first to achieve maximum possible reduction in PCB levels while minimizing downstream impacts

Residual Standard: Lessons Learned

- 90% of the PCB mass was removed in the 1st two dredge passes
- Areas defined by "high confidence" cores accurately depicted vast majority of PCB mass
- Meeting residual standard left CUs open for more than three months, impeding productivity and increasing resuspension

Proposed Changes to the Residuals Standard

- Make dredging more efficient
 - Better balance equipment workload
 - Simplify previously complex decisions
- Keep dredge areas open minimal time to limit resuspension
- Avoid inefficient dredging
 - Stop dredging when clay or shale is encountered

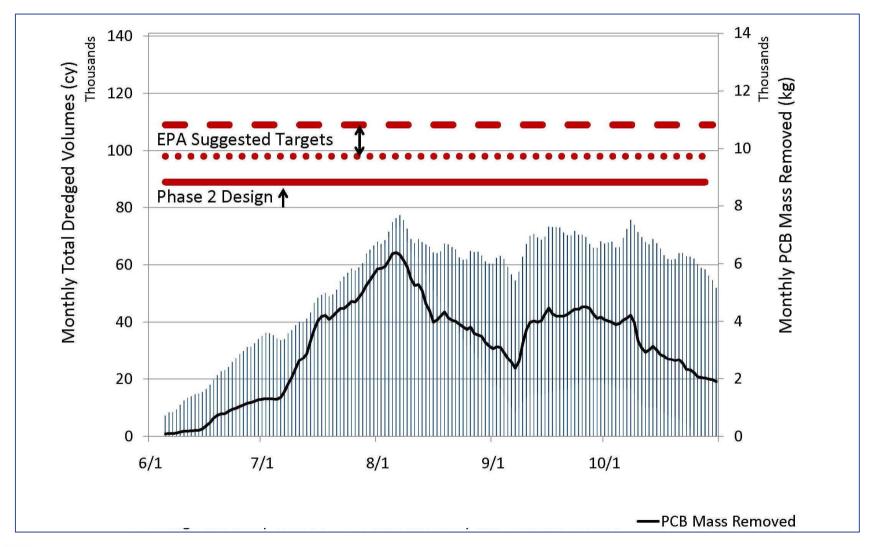
Productivity Standard: Limited by Resuspension

- Increase in PCB removal resulted in resuspension shutdown
 - Complete shutdown eliminates minimum of 2 dredging days; indirect productivity impact even greater
- Structural controls
 - Sheeting installation and removal reduced productivity but did not substantially reduce resuspension
 - Other controls (e.g., flow-related restrictions, restricted equipment operations, alternating

dredge areas, etc.) reduced productivity

Continual Redredging Limited Productivity

- Significant re-dredging needed in all CUs
- Longer than anticipated CU acceptance process exacerbated problem
- Non-productive dredging in bedrock and cobble areas
- Dredging of clay material which has no PCBs
 - Creates processing bottlenecks
 - Cascading impact on logistics



Efforts to Meet Air Quality Standard Reduced Productivity

- Mitigation implemented to reduce standard exceedances included:
 - Adding water to barges
 - Topping barges with low PCB sediment
 - Sheen mitigation
 - Attempts at tarping mini hoppers
 - Sequencing requirements (limiting dredging in "hot" areas)
- Efforts had limited effectiveness but significantly impacted productivity

Phase 1 Monthly Productivity

Conclusions

- Based on Phase 1 experience, EPA's productivity target cannot be met in Phase 2
- Phase 1 suggests we can dredge/process 75,000 to 100,000 CY/month; <u>but</u> resuspension will prevent achieving this dredge rate
- Balancing these standards will preserve the environmental benefits of project

CONCLUSIONS

Guiding Principles for Phase 2

- Keep standards but modify them based on Phase 1 experience:
 - Ensure EPA's goals are met: Reduced
 PCB levels
 - Address the conflicts among standards
 - Be practicable
 - Complete project in five years so benefits to river begin sooner

Conclusions

- EPA and GE agree standards must be modified
- Set limits on resuspension to protect Upper and Lower Hudson
- Prioritize dredging to achieve maximum PCB reduction while minimizing resuspension
- Eliminate inefficient re-dredging to get residuals
- Get project done in five years

